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Partial Differential Equation

By Prof. A.K. Misra

MTM-402: Classification, Characteristic equation, Some important linear Partial
Differential Equations, Fundamental solution of Laplace equation, Mean value theorem,
Harmonic functions and properties, Representation formula, Green’s functions, Green
representation formula, Poisson representation formula, Solution of Dirichlet’s problem
on the ball, Sub-Harmonic functions, The maximum principle, Energy methods, Funda-
mental solutions of Heat equations, Mean value formula, Properties of solutions, Initial
value problem, B.V.Problem for Heat equation, Wave equation, Mean Value method,
Solution of Wave equation with initial values, energy methods.

(i) Heat equation: (Parabolic equation)

∂u

∂t
=
∂2u

∂x2

(ii) Laplace equation: (Elliptic equation)

∂2u

∂x2
+
∂2u

∂y2
= 0

(iii) Wave equation: (Hyperbolic equation)

∂2u

∂t2
=
∂2u

∂x2

We have,

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G

is general equation of second order linear P.D.E and it will be
(i) Parabolic if B2 − 4AC = 0
(ii) Hyperbolic if B2 − 4AC > 0
(iii) Elliptic if B2 − 4AC < 0.

Consider second order linear partial differential equation

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G. (1)

Let ξ and η are two different variable or varient(dependent variable) i.e ξ = ξ(x, y) &
η(x, y).
We transform (x, y) to (ξ, η) i.e. (x, y) 7−→ (ξ, η), provided Jacobian of (ξ, η) ̸= 0

i.e., J =

[
ξx ξy
ηx ηy

]
̸= 0,
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i.e., J must be invertible so that we may also go back from (ξ, η) plane to (x, y) plane.

Now, ux =
∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

ux = uξξx + uηηx (2)

uy =
∂u

∂y
=
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

uy = uξξy + uηηy (3)

uxy = (ux)y =
∂

∂y
(ux) =

∂

∂y
(uξξx + uηηx)

=
∂

∂y
(uξ) + uξ

∂

∂y
(ξx) +

∂

∂y
(uη)ηx + uη

∂

∂y
(ηx)

=

[
∂

∂ξ
(uξ)

∂ξ

∂y
+

∂

∂η
(uξ)

∂η

∂y

]
ξx + uξ

∂2ξ

∂y∂x
+

[
∂

∂ξ
(uη)

∂ξ

∂y
+

∂

∂η
(uη)

∂η

∂y

]
ηx + uη(ηxy)

uxy = uξξξxξy + uξη(ηyξx + ξyηx) + uηηηxηy + uξξxy + uηηxy.

Now, uxx = (ux)x = (uξξx + uηηx)x = (uξξx)x + (uηηx)x

(uξ)x =
∂

∂ξ
(uξ)

∂ξ

∂x
+

∂

∂η
(uξ)

∂η

∂x
= uξξξx + uηξηx

= uξξxx + ξx(uξξξx + uηξηx) + uηηxx + ηx(uη)x

and (uη)x =
∂

∂x

∂u

∂η
=

∂

∂η

(
∂u

∂η

)
∂η

∂x
+

∂

∂ξ

(
∂u

∂η

)
∂ξ

∂x
= uηηηx + uξηξx

uxx = uξξxx + ξx(uξξξx + uηξηx) + uηηxx + ηx(uηηηx + uξηξx)

Solution of 1st order linear homogeneous equations in R2:
Consider a simple homogeneous equation with constant coefficients

aux + buy = 0 ⇔ (a, b).Du = 0. (1)

The linear equation says that the directional derivative of u in the direction of V = (a, b)
is zero. This means that the function u(x, y) remains constant on lines in the direction
of (a, b).
The equations of such lines are

(x− x0, y − y0).(b, a) = 0

bx− ay − bx0 + ay0 = 0

or {bx− ay = c|c ∈ R}

and are called characteristic lines for (1). If we think of a line as a function of x, then

dy

dx
=
b

a
(a ̸= 0).

Now if u does not change along those lines, then

u(x, y) |bx−ay=c = f(c)

⇒ u(x, y) = f(bx− ay)
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If one wants a more precise description of f then some conditions must be specified.
Now let us consider n− dimensional transport equation with constant coefficient

ut + b.Du = 0 in Rn × (0,∞) (1)

where b is a fixed vector in Rn, b = (b1, b2, ..., bn), and u : Rn × [0,∞) → R is the
unknown, u = u(x, t).
Here x = (x1, x2, ....xn) ∈ Rn denotes a typical point in space and t ≥ 0 denotes a
typical time. We write Du = Dxu = (ux1 , ux2 , ..., uxn) for the gradient of u with respect
to the spatial variable x.
The partial differential equation (1) asserts that a particular directional derivatives of u
vanishes. We use this fact by fixing any point (x, t) ∈ Rn × [0,∞) and defining

z(s) = u(x+ sb, t+ s) (s ∈ R)

We then calculate

dz

ds
= Du(x+ sb, t+ s).b+ ut(x+ sb, t+ s) = 0.

The second equality holds because of (1) holds. Thus z(s) is a constant function of s
and consequently for each point (x, t), u is constant on the line through (x, t) with the
direction (b, 1) ∈ Rn+1. Hence if we know the value of u at any point on each such line,
we know the value every where in Rn × [0,∞).

Initial Value Problem: To be precise, let us con-
sider the following initial value problem

ut + b.Du = 0 in Rn × (0,∞) (2)

u = g on Rn × {t = 0}.

Here b ∈ Rn and g : Rn → R are known, and the problem
is to compute u. Given (x, t) as above, the line through
(x, t) with direction (b, 1) is represented parametrically by
(x+ sb, t+ s) (s ∈ R). This lines hits the plane Γ = Rn ×
{t = 0} when s+t = 0, i.e. s = −t, at the point (x−tb, 0).
Since u is constant on the line and u(x− bt, 0) = g(x− tb),
we deduce

u(x, t) = g(x− tb) (x ∈ Rn, t ≥ 0). (3)

So if (2) has a sufficient regular solution u, it must certainly be given by (3). And con-
versely, it is easy to check directly that if g ∈ C1, then u defined by (3) is indeed a
solution of (2)

Remark: If g is not C1, then there is obviously no C1 solution of (2). But even in this
case formula (3) certainly provides a stronger and in fact the only reasonable candidate
for the solution. We may thus informly declare that u(x, t) = g(x − tb), (x ∈ Rn, t ≥ 0)
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to be a weak solution of (2), even should g not be C1.

Nonhomogeneous Problem:
Let us now look at the associated nonhomogeneous problem

ut + b.Du = f in Rn × (0,∞)

u = g on Rn × {t = 0}. (4)

As before fix (x, t) ∈ Rn+1, and inspired by the calculation above. Set

z(s) := u(x+ sb, t+ s) for s ∈ R. Then

Ż(s) = Du(x+ sb, t+ s).b+ ut(x+ sb, t+ s) = f(x+ sb, t+ s)

Consequently

u(x, t)− g(x− tb) = u(x, t)− u(x, 0)

= z(0)− z(−t)

=

∫ 0

−t

Ż(s)ds

=

∫ 0

−t

f(x+ sb, t+ s)ds

=

∫ t

0

f(x+ (s− t)b, s)ds

and so

u(x, t) = g(x− tb) +

∫ t

0

f(x+ (s− t)b, s)ds, (x ∈ Rn, t ≥ 0), (5)

solves the initial value problem (4).

Surface and Volume of a Hyper-Sphere:
Let |A| ̸= 0 and consider the multiple integral

I =

∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
e−⟨Ax,Ax⟩dx1dx2...dxn.

If we put y = Ax, then x = A−1y, and so

I =

∫
Rn

e−⟨Ax,Ax⟩dV (x) =

∫
Rn

e−⟨y,y⟩|det
(
∂x

∂y

)
|dV (y)

=

∫
Rn

e−⟨y,y⟩|det(A−1)|dy1dy2...dyn

= |det(A−1)|
∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
e−(y21+y22+...+y2n)dy1dy2...dyn

=
1

|det(A−1)
|
∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
e−(y21+y22+...+y2n)dy1dy2...dyn

=
1

|det(A−1)
|
∫ ∞

−∞
e−y21dy1

∫ ∞

−∞
e−y22dy2...

∫ ∞

−∞
e−y2ndyn
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But as

J =

∫ ∞

−∞
e−t2dt = 2

∫ ∞

0

e−t2dt =

∫ ∞

0

e−ss
1
2
−1ds = Γ

(
1

2

)
=

√
π

it follows that

I =
π

n
2

|det(A)|
=

π
n
2

|λ1(A)λ2(A)...λn(A)|

Corollary 1: Let B be a positive definite matrix. Then∫
Rn

e−⟨Bx,x⟩dV (x) =
π

n
2

|λ1(B)λ2(B)...λn(B)| 12
=

π
n
2

|det(B)| 12

Proof: Let A =
√
B. Then ⟨Bx, x⟩ = ⟨Ax,Ax⟩ and λi(A) =

√
λi(B) for i = 1(1)n.

i.e B must be positive definite as ⟨Bx, x⟩ = ⟨A2x, x⟩ = ⟨Ax,Ax⟩.
Corollary 2: Let An(ρ) denotes the surface area of the n-dimensional sphere Sn(ρ)

of radius ρ. Then

An(ρ) =
2π

n
2

Γ(n
2
)
ρn−1

Proof: Taking B = I, the identity matrix

π
n
2 =

∫
Rn

e−⟨x,x⟩dV =

∫ ∞

0

∫
An(r)

e−⟨x,x⟩dAn(r)dr

=

∫ ∞

0

∫
An(1)

e−r2rn−1dAn(1)dr

π
n
2 = An(1)

∫ ∞

0

e−r2rn−1dr

= An(1)

∫ ∞

0

e−ss
n
2
−1(

1

2
)ds =

Γ(n
2
)

2
An(1)

Thus An(1) =
2π

n
2

Γ(n
2
)
. Since An(ρ) = ρn−1An(1). So

An(ρ) =
2π

n
2

Γ(n
2
)
ρn−1.

Remark: Note that A2(r) = 2πr, the circumference of a circle of radius r, A3(r) =
2π

3
2 r2

1
2

√
π

= 4πr2, the area of the surface of sphere of radius r, which are the familiar formu-

lae. Note that A1(r) = 2, the number of the end point of the line segment [−r, r].

Corollary3: The volume Vn(ρ) of the n− dimensional hypersphere of radius ρ is given
by

Vn(ρ) =
π

n
2

Γ(n
2
+ 1)

ρn
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Proof:

Vn(ρ) =

∫ ρ

0

An(r)dr =

∫ ρ

0

2π
n
2

Γ(n
2
)
rn−1dr

=
2π

n
2

Γ(n
2
)

ρn

n
=

π
n
2

n
2
Γ(n

2
)
ρn =

π
n
2

Γ(n
2
+ 1)

ρn.

Remark: V1(r) =
√
π

1
2

√
π
r = 2r, the volume of 1− sphere of radius r i.e. the length of the

interval {x : |x| ≤ r}, V2(r) = π
1
r2 = πr2, area inside a circle of radius r, and

V3(r) =
π

3
2

Γ(3
2
) + 1

r3 =
π

3
2

3
2
1
2

√
π
r3 =

4

3
πr3,

the familiar formula for the volume of a sphere of radius r.

Laplace equation: In two dimension

∂2u

∂x2
+
∂2u

∂y2
= 0

In n-dimensional space

∂2u

∂x1
2 +

∂2u

∂x2
2 +

∂2u

∂x3
2 + . . . +

∂2u

∂xn
2 = 0

or ∆u = 0 (1)

Here, unknown u : U −→ R, u = u(x) where U ⊆ Rn is given open set and Poisson’s
equation is −∆u = f (2)

Physical interpretation: Laplace equation comes up in a wide variety of physical
context. u denotes the density of some quantity (e.g. a chemical concentration) in
equilibrium. Then V is any smooth subregion within U , U be any open set in Rn then
the net flux through ∂V is zero. ∫

∂V

−→
F .νdS = 0.

Here F denoting the flux density and ν the unit outward normal field. By Gauss Green
theorem ∫

V

div
−→
F dx =

∫
∂V

−→
F .νdS = 0

since V is arbitrary and so

div
−→
F = 0.

In many physical situations it is found that
−→
F is proportional to gradient of u (i.e.

Du) but points in opposite direction(since the flow is from region of higher to lower
concentration). Thus
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−→
F = −αDu (α > 0) (4)

div(Du) =
−→
D · (Du) = △u = 0 [ Laplace equation].

If u denotes


Chemical concentration

temperature

electrostatic potential

equation (4) is


Fick’s law of diffusion

Fourier law of heat conduction

Ohm’s law of electrical conduction

Fundamental solution:

(a) Derivation of fundamental solution:
Since Laplace equation is invariant under rotation. Let x = (x1, x2, x3, . . . , xn) ∈ Rn U ⊆
Rn. Now for ∆u = 0 (1)

⇒
n∑

i=1

uxixi
=

n∑
i=1

∂2u

∂x2i
= 0

We have to find radial solution. Here

r = |x| =
√
x21 + x22 + x23 + . . . + x2n

r2 = x21 + x22 + x23 + . . . + x2n.

Let us therefore attempt to find a solution u of Laplace equation in U ⊆ Rn having the
form u(x) = v(r)

where r = |x| =
√
x21 + x22 + x23 + . . . + x2n

∂r

∂xi
=

∂xi
∂r

=
xi
r
, xi ̸= 0

uxi
=

∂u

∂xi
=
∂v

∂r

∂r

∂xi
= v′(r)

(xi
r

)
uxi

= v′(r)
(xi
r

)
uxixi

=
∂

∂xi
(uxi

) =
∂

∂xi

(
v′(r)

xi
r

)
=

∂

∂xi
(v′(r))

xi
r
+ v′(r)

∂

∂xi

(xi
r

)
=

∂

∂r
v′(r)

∂r

∂xi

(xi
r

)
v′(r)

(
1

r
+ xi

∂

∂r

(
1

r

)
∂r

∂xi

)
= v′′(r)

(xi
r

)2

+ v′(r)

(
1

r
− xi
r2

(xi
r

))
.
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Now, ∑
uxixi

=
∑

v′′(r)
(xi
r

)2

+
∑

v′(r)

(
1

r
− x2i
r3

)
∆u = v′′(r)

r2

r2
+ v′(r)

n

r
− v′(r)

r2

r3

0 = v′′(r) +
n− 1

r
v′(r)

or v′′(r) +
n− 1

r
v′(r) = 0

If, v′ ̸= 0 (log v′)′ =
v′′

v′
= −n− 1

r
=

1− n

r
.

Integrating, we get

log v′ = (1− n) log r + log a

v′ = r1−na =
a

rn−1
.

Again integrating, we get

v(r) =


b log r + C (n = 2)

b
r(n−2)

+ C (n ≥ 3),

where b and C are constant.

Definition: The function

ϕ(x) =


− 1

2π
log |x| (n = 2)

1
n(n−2)α(n)

1
|x|(n−2)

(n ≥ 3),

defined for x ∈ Rn, x ̸= 0, is the fundamental solution of Laplace’s equation △u = 0
where α(n) is the volume of unit sphere in n- dimensional space.

Poisson’s Equation :
We know that the function x −→ ϕ(x) is harmonic for x ̸= 0. Now if we shift the origin
to a new point y i.e x −→ ϕ(x− y) then this is also harmonic function of x for x ̸= y.
Let us take f : Rn −→ R and note that the mapping x −→ ϕ(x − y)f(y) (x ̸= y) is
harmonic, where y ∈ Rn and thus so is the sum of finitely many such expression built for
different points of y.
This reasoning might suggest that the convolution

u(x) =

∫
Rn

ϕ(x− y)f(y)dy

=


− 1

2π

∫
Rn log(|x− y|)f(y)dy (n = 2)

1
n(n−2)α(n)

∫
Rn

f(y)

|x−y|(n−2)dy (n ≥ 3),
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will solve Laplace’s equation △u = 0. However, this is wrong. We cannot just compute

△u =

∫
Rn

△xϕ(x− y)f(y)dy = 0.

Indeed, as D2ϕ(x− y) is not summable near the singularity at y = x and so the differen-
tiation under the integral sign is incorrect and unjustified ?
Now we show this in the case of one-dimensional Laplace equation.
In one-dimensional case we have ϕ(x) = |x| as ax+ b will be general solution of d2u

dx2 = 0.
Now let us define

u(x) =

∫ ∞

−∞
|x− y|f(y)dy, (1)

with as nice a function f(y) as we wish.
If the second derivative of |x| vanishes and if we can differentiate under the integral sign
in (1), then we should have u

′′
(x) = 0. For the sake of simplicity, we assume that the

function f(y) is smooth and vanishes outside of a finite interval so that all differentiations
under the integral sign are justified:

u′(x) =
d

dx

∫ ∞

−∞
|x− y|f(y)dy =

d

dx

∫ x

−∞
(x− y)f(y)dy +

d

dx

∫ ∞

x

(y − x)f(y)dy

=

∫ x

−∞
f(y)dy −

∫ ∞

x

f(y)dy

Now again differentiating w.r.to x, we get

u
′′
(x) = f(x) + f(x) = 2f(x), (2)

Therefore, the function u(x) is not a solution of the Laplace equation but rather of the
Poisson’s equation with the right side given by function (−2f(x)). In order to get rid of
the factor (−2), we introduce

ϕ1(x) = −1

2
|x|, x ∈ R

and observe that for any ”nice” function f , the function

u(x) =

∫ ∞

−∞
ϕ1(x− y)f(y)dy, x ∈ R

is the solution of the Poisson’s equation

−u′′
(x) = f(x), x ∈ R.

Now solution of the Poisson’s equation

−△ u = f. (3)
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Let, u(x) =

∫
Rn

ϕ(x− y)f(y)dy

=


− 1

2π

∫
R2 log(|x− y|)f(y)dy (n = 2)

1
n(n−2)α(n)

∫
Rn

f(y)

|x−y|(n−2)
dy (n ≥ 3),

(4)

Theorem: Define u by (4). Then (i) u ∈ C2(Rn) and (ii) −△u = f in Rn. Here for
simplicity we will assume that f ∈ C2

c (R
n)i.e. f is twice continuously differentiable, with

compact support. Now we can see that (4) provides a formula for a solution of Poisson’s
equation (3) in Rn.
Proof: (i) We have

u(x) =

∫
Rn

ϕ(x− y)f(y)dy

=

∫
Rn

ϕ(y)f(x− y)dy

u(x+ hei)− u(x)

h
=

∫
Rn

ϕ(y)

[
f(x+ hei − y)− f(x− y)

h

]
f(y)dy (5)

where h ̸= 0 and ei = (0, ..., 1, ..., 0), the 1 is in the ith slot i.e. the unit vector in the
direction of xi.
Now we have

f(x+ hei − y)− f(x− y)

h
−→ ∂f(x− y)

∂xi
as h −→ 0

uniformly in y ∈ Rn (now here we will use the fact that f is compactly supported). Now
we may pass to the limit h −→ 0 in (5) we get

∂u

∂xi
=

∫
Rn

ϕ(y)
∂f(x− y)

∂xi
dy for (i = 1, 2, ..., n)

A very similar argument shows that

∂2u

∂xi∂xj
=

∫
Rn

ϕ(y)
∂2f(x− y)

∂xi∂xj
dy. (6)

As the expression on the right hand side of (6) is continuous in the variable x, so we have
u ∈ C2(Rn).
(ii) Now we show that u(x) satisfied the Poisson’s equation. From above we know that

△u(x) =
∫

Rn

ϕ(y)△x f(x− y)dy.

Since ϕ(y) has singularity at y = 0, so we take a small ϵ > 0 (that we will send to zero at
the end of the proof) and split the integral above into the integral over the ball B(o, ϵ)
of radius ϵ centered at y = 0 and its complement.

△u(x) =

∫
B(o,ϵ)

ϕ(y)△x f(x− y)dy +

∫
Rn−B(o,ϵ)

ϕ(y)△x f(x− y)dy

= Iϵ(x) + Jϵ(x).
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Since this decomposition holds for any ϵ > 0. Therefore we have

△u(x) = lim
ϵ−→0

(Iϵ(x) + Jϵ(x)). (7)

Now we compute the limit in the right hand side of (7) in order to verify the Poisson’s
equation. Now

Iϵ(x) =

∫
B(o,ϵ)

ϕ(y)△x f(x− y)dy

So, |Iϵ(x)| = |
∫
B(o,ϵ)

ϕ(y)△x f(x− y)dy|

≤
∫
B(o,ϵ)

|ϕ(y)|| △x f(x− y)|dy

≤ ∥D2f∥L∞(Rn)

∫
B(o,ϵ)

|ϕ(y)|dy,

since | △x f(x− y)| ≤ ∥D2f∥L∞(Rn).

Now for n = 2,

∫
B(o,ϵ)

|ϕ(y)|dy =
1

2π

∫ ϵ

o

∫ 2π

o

|(log r)|rdrdw

=
1

2π
2π

∫ ϵ

o

|(log r)|rdr

= [| log r|r
2

2
]ϵ0 +

∫ ϵ

o

1

r

r2

2
dr (we assume that 0 < ϵ < 1)

≤ ϵ2| log ϵ|
So for n = 2, |Iϵ(x)| ≤ ∥D2f∥L∞(Rn)ϵ

2| log ϵ|

For n ≥ 3,

∫
B(o,ϵ)

|ϕ(y)|dy ≤
∫
B(o,ϵ)

1

n(n− 2)α(n)

1

y(n− 2)
dy

=
1

n(n− 2)α(n)

∫ ϵ

o

∫
S(n−1)

r(n−1)

r(n−2)
drdw

=
1

n(n− 2)α(n)

∫ ϵ

o

∫
S(n−1)

rdrdw ≤ ϵ2

So |Iϵ(x)| ≤ ∥D2f∥L∞(Rn)

∫
B(o,ϵ)

|ϕ(y)|dy

≤


Cϵ2| log ϵ| (n = 2)

Cϵ2 (n ≥ 3),

From above we can conclude that limϵ−→0 Iϵ(x) = 0, uniformly in x ∈ Rn.
Therefore the contribution to ∆u(x) comes from Jϵ(x).

Now Jϵ(x) =

∫
Rn−B(o,ϵ)

ϕ(y)△x f(x− y)dy

Now we know that, △xf(x− y) = △yf(x− y)

Jϵ(x) =

∫
Rn−B(o,ϵ)

ϕ(y)△y f(x− y)dy
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Gauss Green’s Formula: Let v(x) be a vector valued function and f(x) is a scalar
valued function over a nice domain U . Then

∫
U

v(x)gradf(x)dx =

∫
∂U

(v(x).ν)f(x)dS(x)−
∫
U

f(x)divv(x)dx

△f = div(gradf)

Choose f = ϕ, v(x) = Dyf = gradf

∫
U

Dyf.Dϕdx =

∫
∂U

(gradf.ν)ϕds−
∫
U

ϕdiv(Dyf)dv

Jϵ(x) =

∫
Rn−B(o,ϵ)

ϕ(y)△y f(x− y)dy

=

∫
Rn−B(o,ϵ)

ϕ(y)div(Dyf(x− y))dy

= −
∫
Rn−B(o,ϵ)

Dϕ(y).Dyf(x− y)dy +

∫
∂B(o,ϵ)

ϕ(y)
∂f

∂ν
(x− y)dS(y)

= Kϵ + Lϵ

ν denoting the inward pointing unit normal along ∂B(o, ϵ)

Now, Lϵ =

∫
∂B(o,ϵ)

ϕ(y)
∂f

∂ν
(x− y)dS(y).

|Lϵ| ≤ ∥Df∥L∞(Rn)

∫
∂B(o,ϵ)

|ϕ(y)|dS(y)

≤


Cϵ| log ϵ| (n = 2)

Cϵ (n ≥ 3),

for n = 2,

∫
∂B(o,ϵ)

|ϕ(y)|dS(y) =

∫
∂B(o,ϵ)

1

2π
| log ϵ|dS(y)

=
1

2π
| log ϵ|2πϵ = ϵ| log ϵ|

for n ≥ 3,

∫
∂B(o,ϵ)

|ϕ(y)|dS(y) =

∫
∂B(o,ϵ)

1

n(n− 2)α(n)

1

ϵ(n−2)
dS(y)

=
1

n(n− 2)α(n)

1

ϵ(n−2)
nα(n)ϵ(n−1) ≤ ϵ

So in both cases, we have lim
ϵ−→0

Lϵ = 0.
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So the main contribution to ∆u(x) must come from Kϵ.

Kϵ = −
∫
Rn−B(0,ϵ)

Dϕ(y).Dyf(x− y)dy.

Now integrating by parts using Green’s formula once again, we get

Kϵ =

∫
Rn−B(0,ϵ)

(△ϕ(y))f(x− y)dy −
∫
∂B(0,ϵ)

∂ϕ(y)

∂ν
f(x− y)dS(y).

Now,

∫
Rn−B(0,ϵ)

△ϕ(y)f(x− y)dy = 0.

As △ ϕ(y) = 0, since y ∈ Rn −B(0, ϵ) so y ̸= 0.

Now, Kϵ = 0−
∫
∂B(0,ϵ)

∂ϕ(y)

∂ν
f(x− y)dS(y).

Now consider the case n ≥ 3, then

Dϕ(y) =
1

n(n− 2)α(n)
D(|y|−(n−2))

=
1

n(n− 2)α(n)

(
−n+ 2

2

)
(y21 + y22 + . . . + y2n)

−n+2
2

−12y

= − 1

n(n− 2)α(n)
(n− 2) |y|−ny

= − 1

nα(n)
.
y

|y|n
(y ̸= 0)

and ν =
−y
|y|

= −y
ϵ

on ∂B(0, ϵ).

Consequently,
∂ϕ(y)

∂ν
= ν.Dϕ(y)

= −
(y
ϵ

)
.

(
−1

nα(n)

y

ϵn

)
=

1

nα(n)ϵn−1
on ∂B(0, ϵ)

Since nα(n) is the surface area of the sphere ∂B(0, ϵ), we have

Kϵ = − 1

nα(n)ϵn−1

∫
∂B(o,ϵ)

f(x− y)dS(y)

= − 1

nα(n)ϵn−1

∫
∂B(x,ϵ)

f(y)dS(y)

= − 1

|∂B(x, ϵ)|

∫
∂B(x,ϵ)

f(y)dS(y)

= −
∮
∂B(x,ϵ)

f(y)dS(y).

Thus lim
ϵ→0

Kϵ(x) = −f(x)

so △ u(x) = −f(x). Hence proved.
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Note: If f(x) is continuous at x then
∮
∂B(x,r)

f(y)dS(y) = f(x) as r → 0.

Now
∮
∂B(x,r)

f(y)dS(y)− f(x =
∮
∂B(x,r)

(f(y)− f(x))dS(y).

Now choose r < δ, and using the continuity of f at x, we get

|
∮
∂B(x,r)

f(y)dS(y)− f(x)| <
∮
∂B(x,r)

|f(y)− f(x)|dS(y) < ϵ,

hence proves.
Mean Value Formula:

Now we will show that locally u(x) is close to its average. Intuitively this implies that
u(x) can not behave very irregularly and should have limited room to oscillate.
Now let us first look mean value property in one-dimension. Any harmonic function in
one-dimension is linear u(x) = ax + b, and then of course, for any x ∈ R and any l > 0,
we have

u(x) =
1

2
(u(x+ l) + u(x− l)) =

1

2l

∫ x+l

x−l

u(y)dy.

Now following result is nothing but generalization to harmonic function in higher dimen-
sions.

Theorem: Let U ⊂ Rn be an open set and let B(x, r) be a ball centered at x ∈ Rn

of radius r > 0 contained in U . Assumed that the function u(x) satisfies △u = 0 for all
x ∈ U and that u ∈ C2(U). Then we have

u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y)dy =
1

|∂B(x, r)|

∫
∂B(x,r)

u(t)dS(y)

=

∮
B(x,r)

u(y)dy =

∮
∂B(x,r)

u(y)dS(y).

Proof: Let us fix the point x ∈ U and define

ϕ(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y)dS(y) (1)

It is easy to note that since u(x) is continuous, we have

lim
r−→0

ϕ(r) = u(x).

Therefore our proof will be over if we will prove that

ϕ′(r) =
dϕ

dr
= 0 for all r > 0.

For this, we will use the polar coordinates i.e. y = x + rz with z ∈ ∂B(0, 1). Now
equation (1) will take the following form

ϕ(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(x+ rz)dS(z).
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Now differentiating above w.r.t.’r’, we get

ϕ′(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

Du(x+ rz) · zdS(z).

Going back to y− variable, we get

ϕ′(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

Du(y) · y − x

r
dS(y)

=
1

|∂B(x, r)|

∫
∂B(x,r)

∂u

∂ν
dS(y) (2)

where y−x
r

is unit vector on ∂B(x, r) and ∂u
∂ν

is the directional derivative.
Now we will use the following Green’s formula∫

U

f △ gdy =

∫
∂U

f
∂g

∂ν
dS −

∫
U

Df.Dgdy

by taking f = 1 and g = u, we get∫
B(x,r)

△udy =

∫
∂B(x,r)

∂u

∂ν
dS(y) (3)

Now combining equation (2) and (3), we get

ϕ′(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

∂u

∂ν
dS(y)

=
1

|B(x, r)|

∫
∂B(x,r)

△u(y)dS(y) = 0(∵ u is harmonic)

or ϕ′(r) =
|B(x, r)|
|∂B(x, r)|

1

|B(x, r)|

∫
B(x,r)

△u(y)d(y)

=
r

n

∮
B(x,r)

△uy = 0.

This implies that ϕ(r) is a constant.

So, ϕ(r) = lim
t−→0

1

|∂B(x, t)|

∫
∂B(x,t)

u(y)dS(y) = u(x)

So, u(x) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y)dS(y)

In order to prove the first equality we use the polar coordinates once again

1

|B(x, r)|

∫
B(x,r)

u(y)dy =
1

|B(x, r)|

∫ r

0

(∫
∂B(x,s)

u(y)dS(y)

)
ds

=
1

|B(x, r)|

∫ r

0

u(x)nα(n)sn−1ds

= u(x)
nα(n)rn

n|B(x, r)|
=
u(x)

n

nα(n)rn

α(n)rn
= u(x)

i.e., u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y)dy =

∮
B(x,r)

u(y)dy.
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Theorem: (Converse to mean value property)
If u ∈ C2(U) satisfied

u(x) =

∮
∂B(x,r)

udS =
1

|∂B(x, r)|

∫
∂B(x,r)

udS

for each ball B(x, r) ⊂ U , then u is harmonic.
Proof: We will try to prove it by contradiction.
Assume that △u ̸= 0, then there exists some ball B(x, r) ⊂ U , such that say △u > 0,
within B(x, r).
Now since u(x) =

∮
∂B(x,r)

u(y)dS(y). This says that u(x) represents the average of u over

the surface of the ball B(x, r).
Now define ϕ(r) as above i.e.

ϕ(r) =

∮
∂B(x,r)

u(y)dS(y).

Since u(x) is average over the surface of the ball B(x, r) so we must have

ϕ′(r) = 0

Now 0 = ϕ′(r) =
r

n

∮
B(x,r)

△u(y)dy > 0 (as △ u > 0 in B(x, r))

i.e. 0 > 0.

This is a contradiction. Hence the statement of theorem is true.

Strong Maximum Principle:

Theorem: Suppose u ∈ C2(U)
∩
C(U) is harmonic within U then

(i) max
Ũ

u = max
∂U

u.

(ii) Furthermore, if U is connected and there exist a point x0 ∈ U such that

u(x0) = max
Ũ

u.

Then u is constant with U. Assertion (i) is maximum principle for Laplace equation and
(ii) Strong Maximum Principle.

Proof: We will prove (ii) from which (i) follows;
By assumption, u is bounded from above and attains its maximum in U at a point x0.
Let

u(x0) =M = max
U

{u}

and consider the following set

F = u−1{M} = {x ∈ U : u(x) =M}.
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The following fact may be noted
(i) Since singleton sets are closed in usual topology and so {M} is closed. Now continuity
of u implies that u−1{M} = F is closed.
(ii) F is also open.
Now for any 0 < r < dist(x0, ∂U)

M = u(x0) =

∮
B(x0,r)

u(y)dy ≤M

The equality holds only when u(y) = M ∀ y ∈ B(x0, r) otherwise if u(y) < M for some
y ∈ B(x0, r), then we will get a contradiction and so u(y) =M ∀ y ∈ B(x0, r).
This implies that B(x0, r) ⊆ F and so F is open.
Now the subset F of U is closed as well as open and keeping in mind the connectedness
of U, we get F = U, i.e. u(x) =M ∀ x ∈ U. Hence proved.

Now we use (ii) to prove (i).
Certainly

max
U

u ≥ max
∂U

u since ∂U ⊆ U.

Now assume max
U

u > max
∂U

u, then the maximum is achieved at some interior point x0.

Let Ux0 be the connected component containing x0. By (ii), we know that u ≡
constant = u(x0) in Ux0 .

Since u ∈ C(U), we know that lim
x→y∈∂Ux0

u(x) = u(x0) = u(y). Contradicting

max
∂U

u < max
U

u.

Cor 1: Assume that U is a connected domain, and u solves

∆u = 0 in U

u = g on ∂U. (1)

Assume in addition, that g ≥ 0, g is continuous on ∂U, and g(x) ̸= 0. Then u(x) > 0
at all x ∈ U.
Proof. The proof of this corollary immediately follows from minimum principle:
minx∈U u(x) ≥ 0, and u can not attain its minimum inside U, thus u(x) > 0
for all x ∈ U.
Cor 2: (Uniquness) Let g be continuous on ∂U and f be continuous in U. Then
there exists at most one solution u ∈ C2(U)

∩
C(Ū) to the boundary value problem

−∆u = f in U

u = g on ∂U. (2)

Proof: Let u1 and u2 be two solution of (2). Then the difference w = u1 − u2 satifies
the homogeneous problem

∆w = 0 in U

w = 0 on ∂U. (3)
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The maximum principle implies that w ≤ 0 in U while the minimum principle implies
that w ≥ 0 in U, whence w ≡ 0, and thus u1 = u2 in U, proving the corollary.

Regularity of harmonic functions: Now we prove that, if u ∈ C2(U) is harmonic,
then u ∈ C∞. This sort of assertion is called a regularity theorem. The interesting point
is that the algebraic structure of Laplace’s equation△u =

∑n
i=1 uxixi

leads to the analytic
deduction that all the partial derivatives of u exists even those which do not appear in
PDE.

Theorem: If u ∈ C(U) satisfies the mean value property for each ball B(x, r) ⊂ U .
Then U ∈ C∞(U)

Or

If u ∈ C2(U) be a harmonic function in a domain U . Then u is infinitely differentiable
in U .
Proof: The proof of this theorem comes via a miracle. We first define a ”smoothed”
version of u, and then verify that the ”smoothed” version coincides with the original,
hence original is also infinitely smooth.
Consider a radial non-negative functions η(x) ≥ 0 that depends only on |x| such that

(i) η(x) = 0 for |x| ≥ 1
(ii) η(x) is infinitely differentiable and
(iii)

∫
Rn η(x)dx = 1.

Also for each ϵ ∈ (0, 1) define its stretched version

ηϵ(x) =
1

ϵn
η
(x
ϵ

)
.

It is easy to verify that ηϵ satisfied all the above three
conditions. Moreover the function

uϵ(x) =

∫
U

ηϵ(x− y)u(y)dy (1)

is infinitely differentiable in the slightly smaller domain

Uϵ = {x ∈ U |dist(x, ∂U) > ϵ}.

The reason is that we can differentiate infinitely many times under the integral sign in
equation (1).

Our main claim is that, because of the mean value property,

uϵ(x) = u(x) for all x ∈ Uϵ. (2)

This will immediately imply that u(x) is infinitely differentiable in the domain Uϵ and
as any point x from U lies in Uϵ if ϵ < dist(x, ∂U), it follows that u(x) is infinitely
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differentiable at all points x ∈ U .
Let us now verify equation (2)

uϵ(x) =

∫
U

ηϵ(x− y)u(y)dy

=
1

ϵn

∫
U

η

(
|x− y|
ϵ

)
u(y)dy

=
1

ϵn

∫
B(x,ϵ)

η

(
|x− y|
ϵ

)
u(y)dy.

The last equality holds because η(z) = 0 if |z| ≥ 1, where ηϵ(z) = 0 if |z| ≥ ϵ.
Changing variables y = x+ ϵz gives

uϵ(x) =
1

ϵn

∫
B(0,1)

η
(ϵz
ϵ

)
u(x+ ϵz)dz

uϵ(x) =

∫ 1

0

η(r)

[∫
∂B(0,1)

u(x+ ϵrw)dS(w)

]
rn−1dr (3)

The mean value property implies that∫
∂B(0,1)

u(x+ ϵrw)dS(w) = u(x)|∂B(0, 1)|

using this in (3), we get

uϵ(x) = u(x)

∫ 1

0

η(r)|∂B(0, 1)|rn−1dr

= u(x)

∫
B(0,1)

η(y)dy = u(x).

Thus uϵ ≡ u in Uϵ, and u ∈ C∞(Uϵ) for each ϵ > 0.

Estimates on derivatives:
Theorem: Let u(x) be a harmonic function in a domain U and let B(x0, r) be a ball
contained in U centered at a point x0 ∈ U . Then there exists universal constants Cn

and Dn that depends only on the dimension n so that we have

u(x0) ≤
Cn

rn

∫
B(x0,r)

|u(y)|dy (1)

and

|Du(x0)| ≤
Dn

rn+1

∫
B(x0,r)

|u(y)|dy (2)
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Proof: The first estimate follows immediately from the mean value formula. Now
for the derivation of second inequality, we note that if u(x) is harmonic then so are the
partial derivatives ∂u

∂xj
,

∂u(x0)

∂xj
≤ 1

|B(x0,
r
2
)|

∣∣∣∣∣
∫
B(x0,

r
2
)

∂u(y)

∂xj
dy

∣∣∣∣∣
=

1

|B(x0,
r
2
)|

∣∣∣∣∣
∫
∂B(x0,

r
2
)

u(y)νj(y)dS(y)

∣∣∣∣∣ (By Gauss Green’s formula), (3)

where, νj(y) is the j− th component of the outward normal. Continuing this, we see that

∂u(x0)

∂xj
≤ 2n

α(n)rn
.
nα(n)rn−1

2n−1
sup

z∈∂B(x0,
r
2
)

|u(z)|

=
2n

r
sup

z∈∂B(x0,
r
2
)

|u(z)|. (4)

Now, we can use the estimate (1) applied at any point z ∈ ∂B(x0,
r
2
) :

|u(z)| ≤ Cn

( r
2
)n

∫
B(x0,

r
2
)

|u(z′)|dz′. (5)

However, since |x0 − z| ≤ r
2
(this is why, we took a

smaller ball in (3)), any such ball B(z, r
2
) is contained in-

side the ball B(x0, r), thus (5) implies that

|u(z)| ≤ Cn

( r
2
)n

∫
B(x0,r)

|u(z′)|dz′.

Now it follows from (4) that

|∂u(x0)
∂xj

| ≤ 2n

r

Cn

( r
2
)n

∫
B(x0,r)

|u(z′)|dz′

=
Dn

rn+1

∫
B(x0,r)

|u(y)|dy. (6)

which proves the result (2).

Now we proceed to find the estimates of higher order derivatives.
We have proved that theorem is true for K = 0 and K = 1.

|u(x)| ≤ 1

α(n)
(
2

r
)n∥u∥L1B(x0,r)

and

|uxi
(x0)| ≤

2n+1n

α(n)

1

rn+1
∥u∥L1B(x0,r)
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Assume now K ≥ 2 and theorem is true for all balls in U and each multi index of
order less than or equal to K − 1. Fix B(x0, r) ⊂ U and let α be a multi index with
|α| = K. Then Dαu = (Dβu)xi

for some i ∈ {1, ..., n}, ∥β∥ = K − 1.
Now as previously, we can easily prove that

|Dαu(x0)| ≤
nK

r
∥Dβu∥L∞(∂B(x0,

r
K
))

If x ∈ ∂B(x0,
r
K
), then B(x, K−1

K
r) ⊂ B(x0, r) ⊂ U .

Thus we can apply the theorem for K − 1, we get

∥Dβux∥ ≤ (2n+1n(K − 1))K−1

α(n)(K−1
K
r)n+K−1

∥u∥L1B(x0,r).

Combining this with previous, we get

|Dαux0 | ≤ nK

r

(2n+1)K−1nK−1(K − 1)K−1Kn+K−1

α(n)(K − 1)n+K−1rn+K−1
∥u∥L1B(x0,r)

=
nK

r

(2n+1)K−1nK−1Kn+K−1

α(n)(K − 1)nrn+K−1
∥u∥L1(x0,r)

=
(2n+1)K−1nKKn+K

α(n)(K − 1)nrn+K
∥u∥L1B(x0,r)

=
(2n+1)KnKKKKn

α(n)(K − 1)n2n+1rn+K
∥u∥L1B(x0,r)

=
(2n+1nK)K

α(n)rn+K

Kn

2n+1(K − 1)n
∥u∥L1B(x0,r)

<
(2n+1nK)K

α(n)rn+1
∥u∥L1B(x0,r),

here, for K ≥ 2
Kn

2n+1(K − 1)n
< 1.

Liouville’s Theorem: Let u(x) be a harmonic bounded
function in Rn. Then u(x) is equal identically to a con-
stant.
Proof: Let us assume that |u(x)| ≤M for all x ∈ Rn, we
fix x0 ∈ Rn and from the theorem for local estimates, we
have

|Du(x0)| ≤
2n+1n

α(n)rn+1
∥u∥L1B(x0,r).

Now ∥u∥L1B(x0,r) ≤ α(n)rnM

so |Du(x0)| ≤ 2n+1n

α(n)rn+1
α(n)rnM

=
2n+1n

r
M.
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As this is true for any r > 0, we may let r −→ ∞ and conclude that Du(x0) = 0 thus
u(x) is equal identically to a constant.

Or, |Dux0 | ≤ C

rn+1

∫
B(x0,r)

|u(y)|dy ≤ Cα(n)rn

rn+1
M ≤ Cα(n)

r
M

−→ 0 as r −→ ∞
Thus Du = 0 =⇒ u = constant

Theorem : (Representation formula)
Let f ∈ C2

c (R
n), n ≥ 3. Then any bounded solution of −△ u = f in Rn has the form

u(x) =
∫

Rn ϕ(x− y)f(y)dy + C (x ∈ Rn) for some constant C.
Proof: Since ϕ(x) is defined as

ϕ(x) =


− 1

2π
log |x| (n = 2)

1
n(n−2)α(n)

1
|x|(n−2)

(n ≥ 3),

Since ϕ(x) −→ 0 as |x| −→ ∞ for n ≥ 3.
Suppose ũ is another solution of the given poisson equation −∆u = f.
ũ(x) =

∫
Rn ϕ(x− y)f(y)dy is bounded solution of −△ u = f in Rn.

If u is another solution then w = u− ũ is a solution of Laplace’s equation △w = 0. Now
applying the Liouville’s theorem, we get w is a constant so u(x) =

∫
Rn ϕ(x−y)f(y)dy+C.

Remark: If n = 2 then ψ(x) = 1
2π

log |x| is unbounded as |x| −→ ∞ and so may be∫
R2 ψ(x− y)f(y)dy.

Question: Harnack’s inequality for 1-dimension:

Let us first try to understand this in one dimensional case.
Let u(x) be a non-negative harmonic function on the interval (0, 1), that is, u(x) = ax+b
with some constants a, b ∈ R.
We claim that if u(x) > 0 for all x ∈ [0, 1] then

1

3
≤ u(x)

u(y)
≤ 3 (1)

for all x, y in the smaller interval (1
4
, 3
4
). The constants 1

3
and 3

4
in equation (1) depend on

the choice of the ”smaller ” interval. These constants will change if we will replace (1
4
, 3
4
)

by another subinterval of [0, 1]. But once are fix the subinterval, they do not depend
on the choice of the harmonic function. Let us now show that equation (1) holds for all
x, y ∈ (1

4
, 3
4
) without loss of generality we may assume that x > y. First consider the case

a > 0. Then since u(x) is increasing (because a > 0), we have

1 ≤ u(x)

u(y)
≤
u(3

4
)

u(1
4
)
=

3a+ 4b

a+ 4b
(2)
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As u(x) > 0 on [0, 1], we know that b > 0 (and a > 0 by assumption) using this in
equation (2), we get [let c = a

b
]

1 ≤ u(x)

u(y)
≤ 3c+ 4

c+ 4
= 3− 8

c+ 4
≤ 3.

On the other hand, if a < 0 then the function u is decreasing and

1 ≥ u(x)

u(y)
≥
u(3

4
)

u(1
4
)
=

3c+ 4

c+ 4
=

1

3
+

8(c+ 1)

3(c+ 4)
.

As u(1) > 0 we know that a + b > 0, and we still have b > 0 since u(0) > 0. Thus
−1 < c < 0 and therefore

1 ≥ u(x)

u(y)
≥ 1

3
+

8(c+ 1)

3(c+ 4)
≥ 1

3
.

Now we conclude that equation (1) indeed holds i.e.

1

3
≤ u(x)

u(y)
≤ 3 for x, y ∈ (

1

4
,
3

4
).

Geometrically equation (1) expresses the following fact:

If u(3
4
) >> u(1

4
) then the slope of the straight line connecting the points (1

4
, u(1

4
)) and

(3
4
, u(3

4
)) is too large so that it would go below the x− axis at x = 0. On the other hand

if u(1
4
) >> u(3

4
) then this line would go below that x− axis at x = 1. Therefore the

condition that u(x) > 0 on the larger interval [0, 1] is very important here.
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Harnack’s inequality: For each connected open set V ⊂⊂ U , there exists a positive
constant C, depending only on V , such that

sup
V
u ≤ C inf

V
u

for all nonnegative harmonic functions u in U .
Thus in particular

1

C
u(y) ≤ u(x) ≤ Cu(y). for all points x, y ∈ V

Explanation: Let x, y ∈ V , then

u(x) ≤ sup
V

u ≤ C inf
V
u ≤ Cu(y)

∴ ∀x, y ∈ V, u(x) ≤ Cu(y)

and u(y) ≤ Cu(x) ⇒ 1

C
u(y) ≤ u(x)

So
1

C
u(y) ≤ u(x) ≤ Cu(y) ∀ x, y ∈ V

Proof: Let r > 0 and r = 1
4
dist(V, ∂U)

Let x, y ∈ V such that |x− y| ≤ r

Then u(x) =

∮
B(x,2r)

u(z)dz =

∫
B(x,2r)

u(z)dz

α(n)(2r)n

Let z ∈ B(y, r) then |z − y| < r

|z − x| ≤ |z − y|+ |y − x| < 2r

⇒ z ∈ B(x, 2r)

So B(y, r) ⊆ B(x, 2r)

Since u(z) is non-negative and B(y, r) ⊆ B(x, 2r)
So

u(x) =

∫
B(x,2r)

u(z)dz

α(n)(2r)n
≥

∫
B(y,r)

u(z)dz

α(n)(2r)n

=

∮
B(y,r)

u(z)dzα(n)rn

α(n)(2r)n
=

∮
B(y,r)

u(z)dz

2n

=
1

2n
u(y)

∴ ∀ x, y ∈ V such that |x− y| < r

u(x) ≥ 1

2n
u(y)

and

u(y) ≥ 1

2n
u(x)
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1

2n
u(y) ≤ u(x) ≤ 2nu(y)

Let Ux∈VB
0(x, r

2
) be an open covering of V .

As V is compact, ∃ x1, x2, ..., xN ∈ V such that

V ⊆ B0(x1,
r

2
) ∪ ... ∪B0(xN ,

r

2
)

write Ai = V ∩B0(xi,
r

2
), i = 1, 2, ..., N

Then as V is connected (∴ V is connected).

Claim: Each Ai (i = 1, 2, ..., N) must intersect with some Aj(i ̸= j)(j = 1, 2, ..., N).
If not then there exists Ai(i = 1, 2, ..., N) such that Ai ∩ Aj = ϕ ∀ j(j = 1, 2, ..., N)
(i ̸= j). Then

V = Ai ∪ (∪N
j=1,i ̸=jAj)

Here Ai and ∪N
j=1,i ̸=jAj both are open in V and they are disjoint.

⇒ V having a separation (a contradiction)
Thus our claim is true.
Now we re-order Ai, such that Ai ∩ Ai+1 ̸= ϕ, i = 1, 2, ..., N − 1
Let x, y ∈ V , the most extreme case is

x ∈ A1, y ∈ AN

. Then for z12 ∈ A1 ∩ A2

|x− z12| ≤ r

∴ u(x) ≥ 1

2n
u(z12)

z23 ∈ A2 ∩ A3, |z12 − z23| ≤ r

u(z12) ≥
1

2n
u(z23)

for
z34 ∈ A3 ∩ A4, |z23 − z34| ≤ r

u(z23) ≥
1

2n
u(z34)

Similarly
zN−1,N ∈ AN−1 ∩ AN

|z(N−1,N) − y| ≤ r

u(zN−1,N) ≥
1

2n
u(y)
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u(x) ≥ (
1

2n
)Nu(y)

or u(x) ≥ 1

2nN
u(y)

Similarly

u(y) ≥ 1

2nN
u(x)

thus
1

2nN
u(y) ≤ u(x) ≤ 2nNu(y)

1

C
y(y) ≤ u(x) ≤ Cu(y)

Therefore for every x, y ∈ V ∀ a positive constant C such that

1

C
y(y) ≤ u(x) ≤ Cu(y)

Green’s Function:
Let us now assume U ⊆ Rn is open, bounded and ∂U is C1. Now we will show a
systematic way to construct solutions of the boundary value problem for the Poisson’s
equation

−△ u = f in U, (1a)

subject to the prescribed boundary condition

u = g on ∂U, (1b)

when the domain U is sufficiently simple (a ball, half space, etc.).
We will construct a more or less explicit formula for the solution. When U is complicated
we cannot get as explicit formula but we will reduce solving equation (1) with arbitrary
function f and g to the special case f = 0, and one particular function g. Having a solu-
tion to this one special case allow to construct solutions for general f and g immediately.
This is useful when one needs to solve Poisson’s equation in the same domain for various
f and g .
Let us recall that fundamental solution of the Laplace equation ′ϕ(x)′, which we have
obtained earlier is:

ϕ(x) = − 1

2π
log |x| (n = 2)

and

ϕ(x) =
1

n(n− 2)α(n)

1

|x|(n−2)
(n ≥ 3).

We have shown that

u(x) =

∫
Rn

ϕ(x− y)f(y)dy (2)

is a solution of the Poisson’s equation

−△ u = f,
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posed in all of Rn. Now we would like to adapt the representation formula given by equa-
tion (2) to the boundary value problem equation (1a - b) posed in a bounded domain
and taking into account the correct boundary conditions.

Derivation of Green’s Function:

Suppose first of all u ∈ C2(U) is an arbitrary function. Fix x ∈ U and choose ϵ > 0
so small that B(x, ϵ) ⊆ U
Now consider the domain

Vϵ = U −B(x, ϵ) [i.e. U without the ball B(x, ϵ)]

Now using the Green’s formula, we get∫
Vϵ

[u(y)△ ϕ(y − x)− ϕ(y − x)△ u(y)]dy =

∫
∂Vϵ

[u(y)
∂ϕ

∂ν
(y − x)− ϕ(y − x)

∂u

∂ν
(y)]dS(y).

(1)

Here ν denotes the outer unit normal vector on ∂Vϵ. The reason we had to cut out
the small ball around the point x is that now when y ∈ Vϵ the argument (y − x) of the
fundamental solution ϕ(y−x) cannot vanish, and is regular. Otherwise, we would not be
able to apply Green’s formula since ϕ(y−x) will be singular at y = x. As △ϕ(y−x) = 0
when y ̸= x, the above relation (1) becomes

−
∫
Vϵ

ϕ(y − x)△ u(y)dy =

∫
∂Vϵ

[u(y)
∂ϕ

∂ν
(y − x)− ϕ(y − x)

∂u

∂ν
(y)]dS(y). (2)

This identity holds for all ϵ > 0 and we will now pass
to the limit ϵ → 0 in (2). The boundary ∂Vϵ is the union
of ∂U and ∂B(x, ϵ) as earlier.

−
∫
Vϵ

ϕ(y − x)△ u(y)dy =

∫
∂U

[u(y)
∂ϕ

∂ν
(y − x)− ϕ(y − x)

∂u

∂ν
(y)]dS(y)

+

∫
∂B(x,ϵ)

[u(y)
∂ϕ

∂ν
(y − x)− ϕ(y − x)

∂u

∂ν
(y)]dS(y) (3)

Here we will consider the case n ≥ 3. The case n = 2 can be similarly proved. Now∣∣∣∣∫
∂B(x,ϵ)

ϕ(y − x)
∂u

∂ν
(y)dS(y)

∣∣∣∣ =
1

n(n− 2)α(n)ϵn−2

∣∣∣∣∫
∂B(x,ϵ)

∂u

∂ν
(y)dS(y)

∣∣∣∣
≤ 1

n(n− 2)α(n)ϵn−2

∫
∂B(x,ϵ)

∣∣∣∣∂u∂ν (y)dS(y)
∣∣∣∣

≤ 1

n(n− 2)α(n)ϵn−2
M

∫
∂B(x,ϵ)

dS(y)

≤ 1

n(n− 2)α(n)ϵn−2
Mnα(n)ϵn−1

=
Mϵ

n− 2
→ 0 as ϵ→ 0
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here M = supy∈U |Du|.
For n ≥ 3,

|y − x|2 =
[
(y1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2 + . . . + (yn − xn)
2
]

∂ϕ(y − x)

∂ν
= Dϕ(y − x).ν = D

[
1

n(n− 2)α(n)|y − x|n−2

]
.ν̄

(
where, ν̄ =

−(y − x)

|y − x|

)
=

[
−(n− 2)|y − x|(−n+2−1)

n(n− 2)α(n)

n∑
i=1

∂(|y − x|)
∂yi

]
·
[
−(y − x)

|y − x|

]
=

[
−(n− 2)|y − x|−n(y − x)

n(n− 2)α(n)

]
·
[
−(y − x)

|y − x|

]
=

(y − x) · (y − x)

nα(n)|y − x|n+1
=

|y − x|2

nα(n)|y − x|n+1

=
1

nα(n)|y − x|n−1
=

1

nα(n)ϵn−1
On ∂B(x, ϵ)

∫
∂B(x,ϵ)

u(y)
∂ϕ

∂ν
(y − x)dS(y) =

1

nα(n)ϵn−1

∫
∂B(x,ϵ)

u(y)dS(y)

=
1

|∂B(x, ϵ)|

∫
∂B(x,ϵ)

u(y)dS(y)

=

∮
∂B(x,ϵ)

u(y)dS(y) → u(x)as ϵ→ 0.

Now sending ϵ→ 0 in (3), we get

−
∫
U

ϕ(y − x)△ u(y)dy =

∫
∂U

[u(y)
∂ϕ

∂ν
(y − x)− ϕ(y − x)

∂u

∂ν
(y)]dS(y) + u(x)

u(x) =

∫
∂U

[ϕ(y − x)
∂u

∂ν
(y)− u(y)

∂ϕ

∂ν
(y − x)]dS(y)−

∫
U

ϕ(y − x)△ u(y)dy. (3)

This identity is valid for any point x ∈ U and any function u ∈ C2(U).
Therefore in order to compute u(x) we should know △u insides U(which we do for the
solution of the Poisson’s equation (1a), it is f), as well as u(y) on the boundary ∂U(which
we do know for the solution of the boundary value problem (1b), it is g), but also the
normal derivative ∂u

∂ν
at the boundary of U and that we do not know.

We must therefore some how modify to remove this term.
The idea is now to introduce for fixed x a corrector function ϕx = ϕx(y), solving the
boundary value problem:

△ϕx = 0 in U

ϕx = ϕ(y − x) on ∂U
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Let us apply Green’s formula once more (but without the need to throw out a small ball
around the point x, since the function ϕx is regular at y = x) gives

−
∫
U

ϕx(y)△ u(y)dy =

∫
∂U

[u(y)
∂ϕx

∂ν
(y)− ϕx(y)

∂u

∂ν
(y)]dS(y)

=

∫
∂U

u(y)
∂ϕx

∂ν
(y)dS(y)−

∫
∂U

ϕ(y − x)
∂u

∂ν
(y)dS(y)

∫
∂U

ϕ(y − x)
∂u

∂ν
(y)dS(y) =

∫
∂U

u(y)
∂ϕx

∂ν
(y)dS(y) +

∫
U

ϕx(y)△ u(y)dy.

Using this in (4), we get

u(x) =

∫
∂U

u(y)
∂ϕx

∂ν
(y)dS(y) +

∫
U

ϕx(y)△ u(y)dy −
∫
∂U

u(y)
∂ϕ

∂ν
(y − x)dS(y)

−
∫
U

ϕ(y − x)△ u(y)dy

u(x) = −
∫
∂U

u(y)[
∂ϕ

∂ν
(y − x)− ∂ϕx

∂ν
(y)]dS(y)−

∫
U

[ϕ(y − x)− ϕx(y)]△ u(y)dy. (5)

Definition: Green’s function for the region U is

G(x, y) = ϕ(y − x)− ϕx(y) (x, y ∈ U, x ̸= y).

Adapting this terminology in (5), we get

u(x) = −
∫
∂U

u(y)
∂G

∂ν
(x, y)dS(y)−

∫
U

G(x, y)△ u(y)dy (x ∈ U) (6)

where

∂G

∂ν
(x, y) = DyG(x, y) · ν(y)

is the outer normal derivative of G with respect to the variable y. It is easy to note
that the term ∂u

∂ν
does not appear in (6). We have introduced the corrector function ϕx

precisely to achieve this.

Theorem: (Representation formula using Green’s function).
Suppose now u ∈ C2(U) solves the boundary value problem

−△ u = f in U (7)

u = g on ∂U

for given continuous functions f and g. Put this into (6), we obtain the following result.

u(x) = −
∫
∂U

g(y)
∂G

∂ν
(x, y)dS(y) +

∫
U

f(y)G(x, y)dy (x ∈ U).
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Here we have a formula for the solution of the boundary value problem (7) provided we
can construct Green’s function G for the given domain U . This is in general a difficult
matter and can be done only when U has simple geometry.

Theorem: (Symmetry of Green’s function)
For all x, y ∈ U, x ̸= y, we have

G(y, x) = G(x, y)

where Green’s function is
G(x, y) = ϕ(y − x)− ϕx(y)

Proof: Now to prove above theorem, using Green’s formula. Let x ̸= y be two
distinct points in U , and set ν(z) = G(x, z) and w(z) = G(y, z). Let us at two small
balls B(x, ϵ) and B(y, ϵ) with ϵ > 0 so small that the balls are not overlapping and are
contained in U . Let V = U − [B(x, ϵ)

∪
B(y, ϵ)] be the domain U with the two balls

deleted.

Then △ v(z) = 0 z ̸= x z ∈ U

△w(z) = 0 z ̸= y z ∈ U

and v = w = 0 on ∂U

 (1)

and B(x, ϵ) ⊆ U & B(y, ϵ) ⊆ U.
i.e. △zw = △zv = 0 in V as this set contains neither the point x nor the point y. The
Green’s formula then becomes∫

∂V

[
w(z)

∂v

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z) =

∫
V

[w(z)△ v(z)− v(z)△ w(z)]dz = 0 (by (1)) (2)

The boundary of V consists of three pieces, the outer boundary ∂U where both w and v
vanish and the two spheres ∂B(x, ϵ) and ∂B(y, ϵ)

i.e. ∂V = ∂U
∪

∂B(x, ϵ)
∪

∂B(y, ϵ)

and v = w = 0 on ∂U.

Therefore from (2), we have∫
∂B(x,ϵ)

[
w(z)

∂v(z)

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z) +

∫
∂B(y,ϵ)

[
w(z)

∂v(z)

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z)

+

∫
∂U

[
w(z)

∂v(z)

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z) = 0 (3)

∵ w(z) = G(y, z) = ϕ(z − y)− ϕy(z)

ϕy(z) = ϕ(z − y) on ∂U
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w(z) = ϕ(z − y)− ϕ(z − y) = 0 on ∂U

w(z) = 0 on ∂U

similarly v(z) = 0 on ∂U

Now from (3),∫
∂B(x,ϵ)

[
w(z)

∂v(z)

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z)+

∫
∂B(y,ϵ)

[
w(z)

∂v(z)

∂ν
− v(z)

∂w(z)

∂ν

]
dS(z) = 0 (4)

v(z) is harmonic in B(y, ϵ) and w(z) is harmonic in B(x, ϵ) where ν denotes the
inward pointing unitnormal on ∂B(x, ϵ)

∪
∂B(y, ϵ).

Now since w is smooth except for z = y, therefore ∂w
∂ν

is bounded on ∂B(x, ϵ).
So ∃ M > 0 such that |∂w

∂ν
| ≤M on ∂B(x, ϵ)

Now

∣∣∣∣∫
∂B(x,ϵ)

v(z)
∂w(z)

∂ν
dS(z)

∣∣∣∣ ≤
∫
∂B(x,ϵ)

|v(z)|
∣∣∣∣∂w(z)∂ν

∣∣∣∣ dS(z)
≤ sup

z∈∂B(x,ϵ)

|v(z)|M
∫
∂B(x,ϵ)

dS(z)

≤ sup
z∈∂B(x,ϵ)

|v(z)|Mnα(n)ϵn−1 −→ 0 as ϵ −→ 0

lim
ϵ−→0

∫
∂B(x,ϵ)

v(z)
∂w(z)

∂ν
dS(z) = 0

Similarly, we have

lim
ϵ−→0

∫
∂B(y,ϵ)

w(z)
∂v(z)

∂ν
dS(z) = 0

Therefore, taking ϵ −→ 0 in equation (4), we have

lim
ϵ−→0

{∫
∂B(x,ϵ)

w(z)
∂v(z)

∂ν
dS(z)−

∫
∂B(y,ϵ)

v(z)
∂w(z)

∂ν
dS(z)

}
= 0

lim
ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂v(z)

∂ν
dS(z) = lim

ϵ−→0

∫
∂B(y,ϵ)

v(z)
∂w(z)

∂ν
dS(z) (5)

Since v(z) = ϕ(z − x)− ϕx(z) in U and ϕx(z) is smooth in U

lim
ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂v(z)

∂ν
dS(z) = lim

ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂ϕ(z − x)

∂ν
dS(z)

− lim
ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂ϕx(z)

∂ν
dS(z)

Claim: limϵ−→0

∫
∂B(x,ϵ)

w(z)∂ϕ
x(z)
∂ν

dS(z) = 0?

As v(z) is harmonic in B(y, ϵ) and w(z) is harmonic in B(x, ϵ)

v(z) = G(x, z) = ϕ(z − x)− ϕx(z)
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△ϕx = 0 in U and so in B(x, ϵ)

ϕx(z) = ϕ(z − x) on Boundary ∂U

we know the Green’s formula∫
U

(Du.Dv)dx = −
∫
U

u△ vdx+

∫
∂U

u
∂v

∂ν
dS

Now taking v = ϕx(z) and u = w(z), the above formula becomes∫
B(x,ϵ)

(Dw(z) ·Dϕx(z))dz = −
∫
B(x,ϵ)

w(z)△ ϕx(z)dz +

∫
∂B(x,ϵ)

w(z)
∂ϕx(z)

∂ν
dS(z)

Also △ϕx(z) = 0 in B(x, ϵ) and so∫
∂B(x,ϵ)

w(z)
∂ϕx(z)

∂ν
dS(z) =

∫
B(x,ϵ)

(Dw(z) ·Dϕx(z))dz

Since, ∣∣∣∣∫
∂B(x,ϵ)

w(z)
∂ϕx(z)

∂ν
dS(z)

∣∣∣∣ ≤ Cϵ(n−1) sup
∂B(x,ϵ)

|Dw| −→ 0 as ϵ −→ 0.

lim
ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂ν(z)

∂ν
dS(z) = lim

ϵ−→0

∫
∂B(x,ϵ)

w(z)
∂ϕ(z − x)

∂ν
dS(z)− 0

= lim
ϵ−→0

1

nα(n)ϵn−1

∫
∂B(x,ϵ)

w(z)dS(z)

= lim
ϵ−→0

1

|∂B(x.ϵ)|

∫
∂B(x,ϵ)

w(z)dS(z)

= lim
ϵ−→0

∮
∂B(x,ϵ)

w(z)dS(z)

= w(x) = G(y, x).

Similarly, we can show that

lim
ϵ−→0

∫
∂B(y,ϵ)

v(z)
∂w(z)

∂ν
dS(z) = v(y) = G(x, y)

Now from equation (5), we have

|G(y, x) = G(x, y)|

This proves symmetry of Green’s functions.
Green function for half space:
The half space is defined as

Rn
+ = {x = (x1, x2, x3, . . . , xn) ∈ Rn : xn > 0}

This region is unbounded.
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Definition: If x = (x1, x2, x3, . . . , xn) ∈ Rn then its reflection in the plane ∂Rn
+

is the point
x̃ = (x1, x2, x3, . . . ,−xn) ∈ Rn

∂Rn
+ = {(x1, x2, x3, . . . , xn); xn = 0}

We will solve the problem

△ϕx = 0 in Rn
+

ϕx = ϕ(y − x) on ∂Rn
+

 (1)

Let

ϕx(y) = ϕ(y− x̃) = ϕ(y1−x1, y2−x2, y3−x3, . . . yn−1−xn−1, yn+xn) x ∈ Rn
+, x̃ /∈ Rn

+

we note that ϕx is analytic in the region Rn
+ and △ϕx = 0 in Rn

+ and ϕx(y) = ϕ(y−x)
on ∂Rn

+.
Thus, ϕx(y) satisfies the condition of correcter function.
Now Green’s function for the half - space is

G(x, y) = ϕ(y − x)− ϕ(y − x̃), x, y ∈ Rn
+ and x ̸= y.

For the half - space, we will calculate

∂G(x, y)

∂yn
=
∂ϕ(y − x)

∂yn
− ∂ϕ(y − x̃)

∂yn
(1)

Now, ∂ϕ(y−x)
∂yn

∵ ϕ(y − x) =
1

n(n− 2)α(n)

1

r(n−2)
, n ≥ 3 where r = |y − x|

where r2 = (y1 − x1)
2 + (y2 − x2)

2 + (y3 − x3)
2 + . . . + (yn − xn)

2

2r
∂r

∂yn
= 2(yn − xn)

=⇒ ∂r

∂yn
=

(yn − xn)

r

∂ϕ(y − x)

∂yn
=

∂

∂yn

(
1

n(n− 2)α(n)

1

rn−2

)
=

1

n(n− 2)α(n)

∂

∂yn
(r−n+2)

=
1

n(n− 2)α(n)
((2− n)r−n+1)

∂r

∂yn

=
1

n(n− 2)α(n)

(
−(n− 2)

rn−1

)
(yn − xn)

r
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∂ϕ(y − x)

∂yn
= − 1

nα(n)

yn − xn
rn

, r = |y − x| (2)

Now,
∂ϕ(y − x̃)

∂yn
=

∂

∂yn

(
1

nα(n)(n− 2)

1

|y − x̃|n−2

)
|y − x̃| =

(
(y1 − x1)

2 + (y2 − x2)
2 + . . . + (yn + xn)

2
) 1

2

∂

∂yn
(|y − x̃|) =

yn + xn
|y − x̃|

Thus,
∂ϕx(y)

∂yn
=

−(n− 2)

n(n− 2)α(n)

1

|y − x̃|n−1

∂

∂yn
(|y − x̃|)

∂ϕ(y − x̃)

∂yn
=

−1

nα(n)

yn + xn
|y − x̃|n

(3)

Now putting the values of (2) and (3) in (1), we get

∂G(x, y)

∂yn
=

−1

nα(n)

[
yn − xn
|y − x|n

− yn + xn
|y − x̃|n

]
=

2xn
nα(n)|y − x|n

Consequently if y ∈ ∂Rn
+, then

∂G(x, y)

∂ν
= −∂G(x, y)

∂yn
= − 2xn

nα(n)|y − x|n
.

Now suppose u solves the Boundary value problem

△u = 0 in Rn
+

u = g on ∂Rn
+

Then by representation formula using Green’s function, we have

u(x) = −
∫

Rn
+

G(x, y)△ u(y)dy −
∫
∂Rn

+

u(y)
∂G(x, y)

∂ν
dS(y)

= 0−
∫
∂Rn

+

g(y)

{
−2xn

nα(n)|y − x|n

}
dS(y)

u(x) =
2xn
nα(n)

∫
∂Rn

+

g(y)

|x− y|n
dS(y)

u(x) =

∫
∂Rn

+

K(x, y)g(y)dy1dy2 . . . dyn−1 (4)

where, K(x, y) = 2xn

nα(n)
1

|x−y|n , x ∈ Rn
+, y ∈ Rn

+ is known as Poisson’s Kernal.

(4) is the representation formula for our solution

∵ u(x) = −
∫
∂U

g
∂G

∂ν
dS(y) +

∫
U

fG(x, y)dy (∵ −△ u = 0 = f)
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Theorem: Assume g ∈ C(Rn−1)
∩
L∞(Rn−1) and define u by

u(x) =
∫
∂Rn

+
K(x, y)g(y)dy. Then

(i) u ∈ C∞(Rn
+)

∩
L∞(Rn

+)

(ii) △ u = 0 in Rn
+

(iii) lim
x→x0,x∈Rn

+

u(x) = g(x0) for each point x0 ∈ ∂Rn
+

Proof: (i) For each point x, the mapping x −→ G(x, y) is harmonic except for y = x.
As G(x, y) = G(y, x) then x −→ G(x, y) is harmonic except for y = x.

Thus x −→ −∂G(x,y)
∂yn

= K(x, y) is harmonic for x ∈ Rn
+, y ∈ ∂Rn

+.

So keeping in mind harmonicity of function K(x, y), (i) is overed.
(ii) A direct calculation yields that∫

∂Rn
+

K(x, y)dy = 1, for each x ∈ Rn
+.

As g is bounded, u defined above like wise bounded. Since x −→ K(x, y) is smooth for
x ̸= y, we can easily say that u ∈ C∞(Rn

+)

and △ u =

∫
∂Rn

+

△x(K(x, y))g(y)dy, x ∈ Rn
+

this implies that △ u = 0 in Rn
+

(iii) We have

△u = 0 in Rn
+

u = g on ∂Rn
+

u(x) =
2xn
nα(n)

∫
∂Rn

+

g(y)dy

|x− y|n
, x ∈ Rn

+ (1)

K(x, y) =
2xn
nα(n)

1

|x− y|n
(x ∈ Rn

+, y ∈ ∂Rn
+).

Now for fixed x0 ∈ ∂Rn
+, ϵ > 0, choose δ > 0 so small that

|g(y)− g(x0)| < ϵ if |y − x0| < δ, y ∈ ∂Rn
+

Now for |x− x0| < δ
2
, x ∈ Rn

+, we have

|u(x)− g(x0)| =

∣∣∣∣∣
∫
∂Rn

+

K(x, y)(g(y)− g(x0))dy

∣∣∣∣∣
≤

∫
∂Rn

+

K(x, y)|(g(y)− g(x0))|dy

≤
∫
∂Rn

+

∩
B(x0,δ)

K(x, y)|g(y)− g(x0)|dy +
∫
∂Rn

+−B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

(∵
∫
∂Rn

+

K(x, y)dy = 1)

≤
∫
∂Rn

+

∩
B(x0,δ)

K(x, y)|g(y)− g(x0)|dy +
∫
∂Rn

+−B(x0,δ)

K(x, y)|g(y)− g(x0)|dy
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Hence, we note that

I =

∫
∂Rn

+

∩
B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

< ϵ

∫
∂Rn

+

K(x, y)dy = ϵ since ∵
∫
∂Rn

+

K(x, y)dy = 1

and J =

∫
∂Rn

+−B(x0,δ)

|g(y)− g(x0)|dy.

For |x− x0| < δ
2

and |y − x0| ≥ δ, we have

|y − x0| ≤ |y − x|+ |x− x0|

|y − x0| ≤ |y − x|+ δ

2
≤ |y − x|+ 1

2
|y − x0|

and so |y − x| ≥ 1

2
|y − x0|

Thus, J ≤ 2∥g∥L∞

∫
∂Rn

+−B(x0,δ)

K(x, y)dy

≤ 2n+2∥g∥L∞xn
nα(n)

∫
∂Rn

+−B(x0,δ)

|y − x0|−ndy −→ 0, as xn −→ 0

Now we deduced that

|u(x)− g(x0)| ≤ 2ϵ, provided |x− x0| is sufficiently small

This implies that lim
x−→x0,x∈Rn

+

u(x) = g(x0), for each point x0 ∈ ∂Rn
+

Green’s function for unit ball:

Definition: If x ∈ Rn−{0} then the point x̃ = x
|x|2 is called the point dual to x with

respect to ∂B(0, 1). The mapping x −→ x̃ is inversion through unit sphere ∂B(0, 1).
Now we will take U = B0(0, 1) and for x ∈ B0(0, 1), we must find a correcter function
ϕx = ϕx(y) solving

△ϕx = 0 in B0(0, 1)

ϕx = ϕ(y − x) and ∂B0(0, 1)

Then the Green’s function will be

G(x, y) = ϕ(y − x)− ϕx(y).

The idea now is to invert the singularity from x ∈ B0(0, 1) to x̃ /∈ B(0, 1)

∵ x ∈ B0(0, 1) =⇒ |x− 0| < 1 =⇒ |x| < 1

∵ x̃ =
x

|x|2
(∵ x ∈ Rn − {0})
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=⇒ |x̃| =
1

|x|
=⇒ |x̃| > 1

=⇒ x̃ /∈ B(0, 1).

Then the mapping y → ϕ(y − x̃) is harmonic as y ̸= x̃.
Thus y → |x|−(n−2)ϕ(y−x̃) is harmonic for n ≥ 3 and so ϕx(y) = ϕ(|x|(y−x̃)) is harmonic
in U. If y ∈ ∂B(0, 1) and x ̸= 0, then

|x|2|y − x̃|2 = |x|2[|y|2 + |x̃|2 − 2yx̃]

= |x|2
[
|y|2 +

(
x

|x|2

)2

− 2y
x

|x|2

]

=

[
|x|2 + |x|2

|x|2
− 2yx

]
=

[
|x|2 − 2yx+ 1

]
=

[
|x|2 − 2yx+ |y|2

]
(∵ |y|2 = 1)

|x|2|y − x̃|2 = |x− y|2

so [|x|(y − x̃)]−(n−2) = |x− y|−(n−2)

Now ∵ ϕx(y) = ϕ(|x||(y − x̃)|)

=
1

n(n− 2)α(n)

1

(|x||y − x̃|)n−2

=
1

n(n− 2)α(n)

1

|x− y|n−2
, if y ∈ ∂B(0, 1)

= ϕ(y − x)

ϕx(y) = ϕ(y − x) on ∂B(0, 1).

Now G(x, y) = ϕ(y − x)− ϕ(|x||y − x̃|), x ∈ B(0, 1), y ∈ ∂B(0, 1), x ̸= y

G(x, y) = ϕ(y − x)− ϕ(y − x)

G(x, y) = 0 when x ∈ B(0, 1) & y ∈ ∂B(0, 1).

Assume u solves the boundary value problem

△u = 0 in B(0, 1)

u = g on ∂B(0, 1)

∵ B0(0, 1) is open, bounded and ∂B(0, 1) in C1. Now the solution of above problem is

u(x) = −
∫
∂B(0,1)

g(y)
∂G(x, y)

∂ν
dS(y) (1)
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Now we will find ∂G(x,y)
∂ν

∵ ∂G(x, y)

∂ν
= DyG(x, y).ν(y)

Now
∂G(x, y)

∂yi
=

∂ϕ(y − x)

∂yi
− ∂

∂yi
ϕ(|x||y − x̃|) (2)

∵ ∂ϕ(y − x)

∂yi
=

∂

∂yi

{
1

n(n− 2)α(n)

1

|y − x|n−2

}
= − 1

n(n− 2)α(n)
(n− 2)|y − x|1−n ∂

∂yi
(|y − x|)

= − 1

nα(n)|y − x|n−1

∂

∂yi
{(y1 − x1)

2 + (y2 − x2)
2 + . . . + (yn − xn)

2}
1
2

= − 1

nα(n)|y − x|n−1

1

2
{(y1 − x1)

2 + (y2 − x2)
2 + . . . + (yn − xn)

2}−
1
22(yi − xi)

= − 1

nα(n)|y − x|n−1

yi − xi
|y − x|

= − 1

nα(n)

(yi − xi)

|y − x|n

or
∂ϕ(y − x)

∂yi
=

1

nα(n)

(xi − yi)

|x− y|n
(3)

∂ϕ(|y − x̃||x|)
∂yi

=
∂

∂yi

{
1

n(n− 2)α(n)

1

|x|n−2|y − x̃|n−2

}
=

1

n(n− 2)α(n)

(1)

|x|n−2

∂

∂yi
(|y − x̃|−n+2)

=
1

n(n− 2)α(n)

(1)

|x|n−2
(−n+ 2)(|y − x̃|−n+1)

∂

∂yi
(|y − x̃|)

= − 1

nα(n)|x|n−2

∂

∂yi

(
(y1 − x̃1)

2 + . . . + (yn − x̃n)
2
) 1

2

= − 1

nα(n)|x|n−2

1

|y − x̃|n−1

(
(y1 − x̃1)

2 + . . . + (yn − x̃n)
2
)−1

2 (yi − x̃i)

= − 1

nα(n)|x|n−2

1

|y − x̃|n−1

1

|y − x̃|
(yi − x̃i)

= − 1

nα(n)|x|n−2

1

|y − x̃|n
(yi −

xi
|x|2

)

= − 1

nα(n)|x|n−2

1

|y − x̃|n

(
yi|x|2 − xi

|x|2

)
= − 1

nα(n)

(
yi|x|2 − xi
|x|n|y − x̃|n

)
=⇒ ∂ϕ(|y − x̃||x|)

∂yi
= − 1

nα(n)

(
yi|x|2 − xi
|x− y|n

)
and ν(y) =

y

|y|2
= y (∵ |y| = 1, y ∈ ∂B(0, 1))
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Now,
∂G(x, y)

∂ν
=

n∑
i=1

yi
∂G

∂yi
(x, y)

=
n∑

i=1

yi

{
− 1

nα(n)

yi − xi
|y − x|n

−
(
− 1

nα(n)

(yi|x|2 − xi)

|x− y|n

)}
=

−1

nα(n)|x− y|n
n∑

i=1

yi {yi − yi|x|n}

=
−1

nα(n)|x− y|n
n∑

i=1

y2i
(
1− |x|2

)
=

−1

nα(n)|x− y|n
(
1− |x|2

) n∑
i=1

y2i

=
−1

nα(n)

(1− |x|2)
|x− y|n

Hence, from equation (1), we have

u(x) =

∫
∂B(0,1)

(1− |x|2)
nα(n)

g(y)

|x− y|n
dS(y)

=
1− |x|2

nα(n)

∫
∂B(0,1)

g(y)

|x− y|n
dS(y)

u(x) =

∫
∂B(0,1)

K(x, y)g(y)dS(y)

where,

K(x, y) =
1− |x|2

nα(n)

1

|x− y|2
(Poisson’s Kernel).

Now suppose u solve the boundary value problem

△u = 0 in B0(0, r) (5)

u = g in ∂B(0, r) for r > 0

Then ũ(x) = u(rx) with g̃(x) = g(rx) solves △ũ = 0 in B(0, 1) and ũ = g̃ on
∂B(0, 1). Now the formula for (5), becomes

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

g(y)

|x− y|n
dS(y), x ∈ B0(0, r)

Thus function

K(x, y) =
r2 − |x|2

nα(n)r

1

|x− y|n
, x ∈ B0(0, r), y ∈ ∂B(0, r)

is Poisson’s Kernel for the ball B(0, r).
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Theorem: Assume that g ∈ C(∂B(0, r)) and u is defined by

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

g(y)

|x− y|n
dS(y), x ∈ B0(0, r),

then
(i) u ∈ C∞(B0(0, r))

(ii) △ u = 0 in B0(0, r)

(iii) lim
x−→x0,x∈B0(0,r)

= g(x0) for each point x0 ∈ ∂B(0, r),

Question 6: Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0)

whenever u is positive and harmonic in B0(0, r). This is an explicit form of Harnack’s
inequality.
Solution: when, |x| < r and |y| = r, we get r−|x| ≤ |y−x| ≤ r+ |x| (by triangular
inequality).
Poisson’s formula gives us (and we must rely on g ≥ 0) together with the above inequality
plus the identity r2 − |x|2 = (r − |x|)(r + |x|) :

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

g(y)

|x− y|n
dS(y) ≤ r2 − |x|2

nα(n)r

∫
∂B(0,r)

g(y)

(r − |x|)n
dS(y)

=
r + |x|)nα(n)rn−1

nα(n)r(r − |x|)n−1

∫
∂B(0,r)

g(y)dS(y) = rn−2 r + |x|
(r − |x|)n−1

u(0),

which is what we wanted. The other inequality is shown similarly, using the other half
of the inequality of the first paragraph.
Energy Method:

Uniqueness of solution:

−△ u = f in U
u = g in ∂U

}
(1)

Let u1 and u2 solves the problem (1) and take

v = u1 − u2

Now v satisfies the following equation

−△ v = 0 in U
v = 0 on ∂U

}
(1)

Now, let us multiply this equation by v and integrating over U.∫
U

v△ vdx = 0
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Now applying the following Green’s formula∫
∂U

f(x)(v(x).ν)dS(x) =

∫
U

div(v(x))f(x)dx+

∫
U

gradf(x).v(x)dx

Take f(x) = v, v(x), we get∫
∂U

v(Dv.ν)dS(x) =

∫
U

div(Dv)vdx+

∫
U

grad(v).Dvdx

Now ∫
U

v△ vdx =

∫
∂U

v
∂v

∂ν
dS(x)−

∫
U

(Dv).Dvdx∫
U

v△ vdx =

∫
∂U

v
∂v

∂ν
dS(x)−

∫
U

|Dv|2dx

∵
∫
U

v△ vdx = 0

=⇒
∫
∂U

v
∂v

∂ν
dS(x)−

∫
U

|Dv|2dx = 0

As v = 0 on ∂U, we conclude that∫
U

|Dv|2dx = 0,

Now v = 0 on ∂U and Dv ≡ in U, implies that v = 0 in U, i.e., u1 = u2 proving
the uniqueness of solution of (1).
Energy functional: Let us define energy functional as

I[w] =

∫
U

(
1

2
|Dw|2 − wf

)
dx

and the class of Admissible function as

A = {w ∈ C2(Ū);w = g on ∂U}

Theorem: A function u ∈ C2(Ū) solves the boundary value problem

−△ u = f in U
and u = g on ∂U

}
(1)

iff, u ∈ A and I[u] = minw∈A I[w]

Proof: We have

−△ u = f in U
and u = g on ∂U

}
(1)
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Let u solves (1), now take w ∈ A and multiplying (1) by u− w and integrating, we get∫
U

(−△ u− f)(u− w)dx = 0 (2).

Now applying the following Green’s formula∫
∂U

((v(x)).ν)f(x)dS(x) =

∫
U

div(v(x))f(x)dx+

∫
U

Df(x).v(x)dx

by taking, v(x) = Du, f(x) = u− w

we get, ∫
∂U

(Du.ν)(u− w)dS(x) =

∫
U

div(Du)(u− w)dx+

∫
U

D(u− w).Dudx

or

∫
U

−△ u(x)(u− w)dx =

∫
U

Du.D(u− w)dx−
∫
∂U

(Du.ν)(u− w)dS(x),

since u− w = 0 on ∂U, therefore (2) becomes∫
U

[Du.D(u− w)− f(u− w)]dx = 0

or

∫
U

[|Du|2 − fu]dx =

∫
U

[Du.Dw − fw]dx.

By Cauchy-Schwarz inequality, we know that

|Du.Dw| ≤ 1

2
|Du|2 + 1

2
|Dw|2∫

U

(|Du|2 − fu)dx ≤ 1

2

∫
U

|Du|2dx+
∫
U

(
1

2
|Dw|2 − fw)dx

or ∫
U

(
1

2
|Du|2 − fu)dx ≤

∫
U

(
1

2
|Dw|2 − fw

)
dx

=⇒ I[u] ≤ I[w]

=⇒ I[u] = min
w∈A

I[w]

Conversely, let u ∈ A & I[u] = minw∈A I[w], i.e. u be the minimizer of I[w] over
A. Take a function v that is smooth in U and vanishes on boundary ∂U . Consider the
increment of I[u] in the direction of v.

r(s) = I[u+ sv] s ∈ R

Then the function u+ sv is in A. As u minimizes I[w] over A, we should have

r(s) ≥ r(0) for all s ∈ R
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where

r(s) =

∫
U

{
1

2
|Du+ sDv|2 − (u+ sv)f

}
dx.

∵ |Du+ sDv|2 = (Du+ sDv).(Du+ sDv)

= Du.Du+ sDu.Dv + sDv.Du+ s2Dv.Dv

= |Du|2 + 2sDu.Dv + s2|Dv|2

r(s) =

∫
U

(
1

2
|Du|2 − uf

)
dx+ s

∫
U

(Du.Dv − vf)dx+
s2

2

∫
U

|Dv|2dx

Since function r(s) is quadratic in s and attains its minimum at s = 0 and so we have∫
U

(Du.Dv − vf)dx = 0 ?? (at minimum first derivative is zero)

Integrating by parts and using that v = 0 on ∂U gives∫
U

(−△ u− f)vdx = 0

Since this identity holds for all smooth function v that vanishes at the boundary ∂U. It
follows that u satisfies

−△ u = f in U.

Since u ∈ A = {w ∈ C2(Ū); w = g on ∂U}

this implies that u = g on ∂U

Hence

−△ u = f in U
and u = g on ∂U

}
Heat equation: We study heat equation

ut −△u = 0 (1)

and the non-homogeneous heat equation

ut −△u = f (2)

Subject to appropriate initial and boundary conditions. Here t > 0 and x ∈ u where
u ⊂ R open. Then unknown is

u : ũ× [0 ∞) −→ R, u = u(x, t)

and the Laplacian △ is taken with respect to the spatial variables x = (x1, x2, . . . , xn)

△xu =
n∑

i=1

uxixi
, the function f : u× [0∞) −→ R
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is given.
Physical interpretation: The heat equation also known as the diffusion equation
describes in typical applications the evaluation in time of the density u of some quantity
such as heat, chemical concentration, etc.
If V ⊂ U is any smooth subregion the rate of change of total quantity within V equals
the negative of the net flux through ∂V.

d

dt

∫
V

udx = −
∫
∂V

−→
F .νds

F being the flux density. Thus

ut = −divF (3)

as V was arbitrary. In many situation F is proportional to the gradient of u. But points
in the opposite direction (since the flow is from region of higher to lower concentration)

−→
F = −aDu (a > 0)

Now ut = adiv(Du) = a△ u

which for a = 1, is the heat equation.
The heat equation appears as well in the steady of Brownian motion.

Fundamental solution:
(a) Derivation of the fundamental solution:
We observe that the heat equation involves one derivative with respect to the time vari-
able t, but two derivative with respect to the space variables xi(i = 1, 2, 3, . . . , n).
Consequently, we see that if u solves (1) i.e. ut −△u = 0 (1)
then so u(λx, λ2t) for λ ∈ R

This scaling indices the ratio r2

t
(r = |x|) is important for the heat equation and suggests

that we search for a solution of (1) having the form

u(x, t) = v

(
r2

t

)
= v

(
|x|2

t

)
(t > 0, x ∈ R)

It is quicker to seek a solution u having the special structure

u(x, t) =
1

tα
v
( x
tβ

)
x ∈ R, t > 0 (4)

where, α&β are constant and the function v : R −→ R must be found, we come to (4) if
we look for a solution u of the heat equation invarient under dilation scaling.

u(x, t) −→ λαu(λβx, λt)

Now lwt us take
u(x, t) −→ λαu(λβx, λt)

for all
λ > 0, x ∈ R, t > 0 setting λ = t−1
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then v(y) = u(y, 1) for y = t−βx

∵ u(x, t) = t−αv(xt−β)

By (1)

ut −△u = 0

∂u

∂t
− ∂2u

∂x2
= 0

−αt−α−1v(xt−β) + t−α(−βt−β−1x).Dv(xt−β)− (t−α △ v(xt−β)t−2β) = 0

=⇒ αt−α+1v(y) + βt−(α+1)y.Dv(y) + t−(α+2β) △ v(y) = 0 (5)

In order to transform (5) into an extression involving variables alone, we take β = 1
2
then

term with t are identical.

αv +
1

2
y.Dv +△v = 0 (6)

Now v to be a radial solution

v(y) = w(|y|)
v(y) = w(r)

Dv(y) = w′ d

dxi
(r)

= w′ xi

r
√
t

Now,
1

2
y.Dv(y) =

1

2
yi.w

′ xi

r
√
t

=
w′

r

1

2
yi.yi =

1

2

w′

r
|y|2

=
1

2
rw′

∵ v(y) = w(r), |y| = r =
1√
t

√
x21 + . . . + x2n =

√
y21 + . . . + y2n

∂v(y)

∂yi
= w′(r)

∂r

∂xi
= w′(r)

xi
r
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∂2v

∂y2i
=

(
w′(r)

r
+ yi

∂

∂yi

(
w′(r)

r

))
=

(
w′(r)

r
+ xi

∂

∂r

(
w′(r)

r

)
∂r

∂yi

)
=

(
w′(r)

r
+ yi

(
rw′′(r)− w′(r)

r2

)
xi
r

)
1√
t

△v =
n∑

i=1

vxixi
=

n∑
i=1

w′(r)

r
+

1

r

∑ y2i
t

(
w′(r)

r
− w′(r)

r2

)
=

nw′

r
+

|y|2

r

(
w′(r)

r
− w′(r)

r2

)
=

nw′

r
+

(
rw′′(r)− w′(r)

r

)
=

(n− 1)w′

r
+ w′′(r)

Hence

αw +
1

2
rw′ + w′′ +

(n− 1)

r
w′ = 0

for r = |y|. Now we set α = n
2

(rn−1w′)′ +
1

2
(rnw)′ = 0

αw +
1

2
rw′ + w′′ +

(n− 1)

r
w′ = 0

n

2
w +

1

2
rw′ + w′′ +

(n− 1)

r
w′ = 0

n

2
rn−1w +

1

2
rnw′ + rn−1w′′ +

(n− 1)rn−1

r
w′ = 0

1

2
(nrn−1w + rnw′) + (rn−1w′′ + (n− 1)rn−2w′ = 0

1

2
(rnw)′ + (rn−1w′)′ = 0

Integrating we get
1

2
(rnw) + (rn−1w′)′ = a

where a is constant of integration

lim
r−→∞

w,w′ = 0 so a = 0

Hence
1

2
rnw + rn−1w′ = 0

=⇒ w′ = −1

2
rw

=⇒ w′

w
= −1

2
r =⇒ logw = −r

2

4
+ log b
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w

b
= e−

r2

4

w = be−
r2

4 (7)

from (4) and (7)

u(x, t) =
b

t
n
2

e−
|x|2
4t

solves heat equation.

Definition: The function{
1

(πt)
n
2
e−

|x|2
4t x ∈ Rn t > 0

0 u = g x ∈ Rn t < 0

is called the fundamental solution of heat equation. Notice that ϕ is singular at point
(0, 0), we will some time write ϕ(x, t) = ϕ(|x|, t) to emphasize that the fundamental
solution is radial in the variables x.
Lemma: (Integral of fundamental solution) for each time t > 0∫

Rn

ϕ(x, t)dx = 1.

Proof: We calculate∫
Rn

ϕ(x, t)dx =
1

4πt

n
2
∫

Rn

e−
|x|2
4t dx

=
1

4πt

n
2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
. . . e−

(x21+x22+ . . . +x2n)

4t dx1dx2 . . . dxn

=
1

4πt

n
2
(∫ ∞

−∞
e−

(x21)

4t dx1

)(∫ ∞

−∞
e−

(x22)

4t dx2

)
. . .

(∫ ∞

−∞
e−

(x2n)

4t dxn

)
=

1

4πt

n
2√

4πt
√
4πt . . .

√
4πt(ntimes)

=
1

4πt

n
2

(4πt)
n
2 = 1∫

Rn

ϕ(x, t)dx = 1

Initial Value Problem: A solution of the initial or cauchy problem{
ut −△u = 0 in R × (0,∞)

u = g in R × {t = 0}

Let us note the function (x, t) −→ ϕ(x, t) solves the heat equation away from the
singularity at (0, 0) and thus so does (x, t) −→ ϕ(x− y, t) for each fixed y ∈ R.

u(x, t) =

∫
R

ϕ(x− y, t)g(y)dy

=
1

(4πt)
n
2

∫
R

exp−|x− y|2

4t
g(y)dy (x ∈ R, t > 0)
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should also a solution.

Wave equation: The wave equation

utt −△u = 0 (1)

and the non-homogeneous wave equation

utt −△u = f (2)

subject to appropriate initial and boundary conditions. Here t > 0 and x ∈ U where
U ⊆ R is open. Then unknown is U : Ũ × [0,∞) −→ R, u = u(x, t) and Laplacian △ is
taken with respect to the spatial variables x = (x1, x2, x3, . . . , xn)

Physical interpretation: The wave equation is a simplified model for a vibrating
string (n = 1) membrane (n = 2) or elastic solid (n = 3).

In these physical interpretation u(x, t) represents the displacement in some direction
of the point x at time t ≥ 0.
Let V represent any smooth subregion of U. The acceleration within V is then

d2

dt2

∫
V

udx =

∫
V

uttdx

and net contact force

−
∫
∂V

−→
F .νds

where
−→
F denotes force acting on V through ∂V and the mass density is taken to be unity.

Newton’s law asserts the mass times the acceleration equal to net force∫
V

uttdx = −
∫
∂V

−→
F .νds.

The identity obtained for each subregion V and so

utt = −div
−→
F

For elastic bodies,
−→
F is a function of the displacement gradient Du;

utt + divF (Du) = 0, ∵ F (Du) ≃ −ϕDu

utt − ϕ△ u = 0.

This is the wave equation if ϕ = 1

Solution by spherical means:
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(a) Solution for n = 1, D’alembert’s formula:
The initial-value problem for the one-dimensional wave equation in all of R{

utt − uxx = 0 in R × (0,∞) (3)
u = g, ut = h on R × {t = 0}

where g, h are given, we desire to derive formula for u in terms of g and h.
Let us first note the P.D.E. (3) can be factored(

∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u = utt − uxx = 0 (4)

write

v(x, t) =

(
∂

∂t
− ∂

∂x

)
u(x, t)

=⇒ vt(x, t) + vx(x, t) = 0 (x ∈ R, t > 0)

This is a non-homogeneous transport equation with n = 1, b


